Neutral SMase (N-SMase) isoforms, which catalyze hydrolysis of sp

Neutral SMase (N-SMase) isoforms, which catalyze hydrolysis of sphingomyelin (SM) Ulixertinib clinical trial to ceramide and phosphocholine, have been found in the mitochondria of yeast and zebrafish, yet their existence in mammalian mitochondria remains unknown. Here, we have identified and cloned a cDNA based on nSMase homologous sequences. This cDNA encodes a novel protein of 483 amino acids that displays significant homology to nSMase2 and possesses the same catalytic core residues as members of the extended N-SMase family. A transiently expressed V5-tagged protein co-localized with both mitochondria and endoplasmic reticulum markers in MCF-7 and HEK293 cells; accordingly, the enzyme

is referred to as mitochondria-associated nSMase (MA-nSMase). MA-nSMase was highly expressed in testis, pancreas, epididymis, and brain. MA-nSMase had an absolute requirement for cations such as Mg(2+) and Mn(2+) and activation by the anionic ZD1839 in vivo phospholipids, especially phosphatidylserine and the mitochondrial cardiolipin. Importantly, overexpression of MA-nSMase in HEK293 cells significantly increased in vitro N-SMase activity and also modulated

the levels of SM and ceramide, indicating that the identified cDNA encodes a functional SMase. Thus, these studies identify and characterize, for the first time, a mammalian MA-nSMase. The characterization of MA-nSMase described BIX 01294 concentration here will contribute to our understanding of pathways regulated by sphingolipid metabolites, particularly with reference to the mitochondria and associated organelles.”
“In

a previous work we have shown that sinusoidal whole-body rotations producing continuous vestibular stimulation, affected the timing of motor responses as assessed with a paced finger tapping (PFT) task (Binetti et al. (2010). Neuropsychologia, 48(6), 1842-1852). Here, in two new psychophysical experiments, one purely perceptual and one with both sensory and motor components, we explored the relationship between body motion/vestibular stimulation and perceived timing of acoustic events. In experiment 1, participants were required to discriminate sequences of acoustic tones endowed with different degrees of acceleration or deceleration. In this experiment we found that a tone sequence presented during acceleratory whole-body rotations required a progressive increase in rate in order to be considered temporally regular, consistent with the idea of an increase in “clock” frequency and of an overestimation of time. In experiment 2 participants produced self-paced taps, which entailed an acoustic feedback. We found that tapping frequency in this task was affected by periodic motion by means of anticipatory and congruent (in-phase) fluctuations irrespective of the self-generated sensory feedback.

Comments are closed.