It is a known fact that heterotrimeric G proteins interact with classical receptor proteins in the membrane resulting in the activation of signal transduction pathways. However, it has been observed that nutrient carriers can also function as receptors for signalling [70, 71]. The activation
of signal transduction pathways by nutrients has been recognized in MGCD0103 ic50 other systems mainly, S. cerevisiae [72]. Yet, many of the primary intracellular receptors of the signals generated through nutrient carriers have not been identified. In this paper we offer evidence that links transport molecules to G protein signalling and suggests that G proteins could be one of the effectors of nutrient sensing in fungi. There is a hypothesis that GPCR receptors may have evolved from nutrient transporters that gradually lost their transport capacity [71]. Our findings provide a new avenue to study this evolutionary hypothesis. Another SSG-1 interacting protein identified in this work was GAPDH, a highly conserved fungal protein as shown in Additional File 5. The presence of GAPDH, a glycolytic enzyme, on the surface of fungal cells has been reported for various fungal species, such as C. albicans [73] and Paracoccidiodes this website braziliensis [36]. This alternative localization of the enzyme suggests other roles
for this protein besides glycolysis, possibly related to pathogenesis and stress Amylase response. In P. braziliensis, this enzyme has been identified as important in the adhesion to pneumocytes [36] while in S. cerevisiae, GAPDH was reported to affect survival under condition of oxidative stress as a target for S-thiolation, [74]. In Schizosaccharomyces pombe GAPDH was transiently oxidized in response to hydrogen peroxide, enhancing the association between a response regulator and MAPKKK’s promoting peroxide stress signalling [75]. The association of GAPDH to SSG-1 offers additional information to be considered when assessing
the role of GAPDH outside of its traditional function as a glycolytic enzyme. The actual identification of protein-protein interactions constitutes a very important and necessary step if we are to understand the role of G proteins in fungal signalling pathways. The results presented in this paper suggests the involvement of SSG-1 with proteins whose role in many other fungi have been recognized as part of the protective mechanism against the strain that both the environment and the human host pose for the survival of the fungus. Conclusions This study constitutes the first report of the protein-protein interactions of the fungal Gαi subunit SSG-1 with cellular proteins. SOD, GAPDH, and two metal ion transporters were identified as SSG-1 interacting proteins and these interactions were confirmed using Co-IP.