002 % Sal B. Blood glucose and
levels of reactive oxygen species (ROS) were determined at 0, 0.5, 1.0, 1.5, and 2.0 h after administration. Another 3 groups of 10 Kunming mice each were fed with normal diet, high-sugar diet (20 % sucrose, HSD) and HSD + 0.002 % Sal B. Four weeks later, the levels of ROS as well as antioxidant enzyme activity were determined.
Results: Blood ROS showed the first peak at 0.5 h and a higher peak at 1.5 h after high glucose administration. ROS were mainly produced in liver and pancreas with the utilization of glucose. Sal B administration prevented increase in blood glucose and significantly (p < 0.05) reduced ROS produced in the process of glucose absorption and utilization, especially the latter. Sal B decrease oxidative stress induced by HSD through scavenging AZD5153 clinical trial ROS associated with increased activity of antioxidant enzymes.
Conclusion: This study demonstrates that Sal B can decrease oxidative stress in glucose absorption and utilization in HSD mice. Thus, the findings provide a basis for a potential interventional strategy for protecting against oxidative damage induced by HSD.”
“Polybrominated diphenyl ethers (PBDE) are used as flame retardants in a wide variety of products. As part of the Integrated Exposure Assessment Survey (INES), this study aimed to characterize the exposure of an adult German population
using duplicate diet samples, which were collected daily over seven consecutive days, and indoor air and house dust measurements. Our study click here population consisted of 27 female and 23 male healthy subjects, aged 14-60 years, all of whom resided in 34 homes in southern Bavaria. In these 34 residences the air was sampled using glass fiber filters and polyurethane foams and the dust was collected from used vacuum cleaner bags.
The median (95th percentile) daily dietary intake of six Tetra- to HeptaBDE congeners was 1 2 ng/kb. b.w. (3.3 ng/kg b.w.) or 67.8 ng/day (208 ng/day) (calculated from
the 7-day median values of each study subject). Concentrations in indoor air and dust (cumulative Tri- to DecaBDE congener readings) ranged from 8.2 to 477 pg/m(3) (median: 37.8 pg/m(3)) and 36.6 to 1580 ng/g (median: 386 ng/g). respectively. For some congeners, we identified a significant correlation between air and dust levels.
The median (95th percentile) blood concentration selleck chemicals of total Tetra- to HexaBDE congener readings was 5.6 (13.2) ng/g lipid. No significant sex differences were observed, but higher blood concentrations were found in younger participants. Using a simplified toxicokinetic model to predict the body burden from exposure doses led to results that were of the same order of magnitude as the measured blood concentrations.
Based on these measurements and given our exposure assumptions, we estimated for the total tetra- to heptabrominated congener count an average (high) comprehensive total daily intake of 1.2 ng/kg b.w. (2.5 ng/kg b.w.).