smegmatis was determined using a modified bacterial growth time c

smegmatis was determined using a modified bacterial growth time course assay. M. smegmatis was grown in LB at 37°C overnight. This culture was then diluted (1:100) in 5 ml of fresh LB

broth containing the indicated concentration of each drug, and the culture was again incubated at 37°C with shaking at 220 rpm for two days. Samples were taken at various time points (0, 6, 12, 18, 24, 30, 36, 42, and 48 h). Optical density was measured at 600 nm (OD600) using a Beckman DU650 spectrophotometer. All assays were performed SC79 purchase three times. Representative growth curves are shown. DNase I footprinting assays The 84 bp (S6) and 75 bp (S7) dnaA promoter regions were amplified (dnaAf1 and dnaAr2 were used to amplify S6 from genomic DNA, while dnaAf3 and dnaAr4 were used to amplify S7) (Additional file 7) and cleaved by endonuclease EcoRI, leaving a sticky 5′ end that was five nucleotides from the original end. The recessive 3′ end was labeled with Selumetinib concentration [α-32P] dATP (Furui Biotech, Beijing, China) by the Klenow fragment, and then subjected to the same binding reaction as in the electrophoretic LY294002 in vitro mobility shift assay. DNase I footprinting was performed as previously described [26]. The ladders were produced using the Sanger dideoxy method and dnaAf1 and dnaAf3 primers that were end-labeled by T4 polynucleotide kinase and [γ-32P] ATP (Furui Biotech, Beijing,

China), respectively. Bioinformatics assays on the distribution of the identified 7 bp motif within mycobacterial genomes The regulatory sequences were collected from the complete genomes of M. tuberculosis and M. smegmatis and the database of intergenic regions of ORFs (from stop codon to start codon) were constructed. The exact motifs (CACGCCG or CACGAGG) were then used to search for the distribution of the identified 7 bp motifs in the M. tuberculosis H37Rv and the M. smegmatis genomes. The identified target genes are listed (Additional file 10 and Additional file 11). Acknowledgements

We thank Prof. Yi Zhang and her group members for help with footprinting assays. This work was supported by the National Natural Science Foundation of China (30930003) and 973 Program (2006CB504402). Electronic supplementary material Additional file 1: Plasmids and recombinant clonidine vectors used in this study. The data present plasmids and recombinant vectors used in this study. (DOC 32 KB) Additional file 2: SPR assays for the binding of unspecific promoter chip by MtrA. The data present SPR assays for the binding of unspecific promoter chip by MtrA. (DOC 130 KB) Additional file 3: Competing SPR assay with the unlabeled DNA fragments for the binding of the promoter chip by MtrA. The data present the competing SPR assay with the unlabeled DNA fragments for the binding of the promoter chip by MtrA. (DOC 154 KB) Additional file 4: Potential target genes for MtrA in M. tuberculosis. The data provided potential target genes for MtrA in M. tuberculosis.

Comments are closed.