The phylogeny deduced from the sequence of these 2 genes evidenced two clusters
of L. borgpetersenii, one including the fully-sequenced L. borgpetersenii serovar Hardjo-bovis [26], the other one containing no reference sequence. Again, these clusters were in agreement with the clusters derived from the lfb1-based phylogeny. Interestingly, sequences from the cluster containing the Hardjo-bovis reference strain were found only in deer and none of the 88 human clinical samples evidenced this sequence. This suggests that the introduced deer C. timorensis russa might be a reservoir for this Leptospira strain. Other gene phylogenies have been studied, demonstrating that these genes might be sequenced to more precisely identify Leptospira strains, notably ligB [27], rpoB [28] and secY [8, 9, 18]. However, though they might prove useful in MLST or other selleck phylogeny studies, most of them can currently only be used when sufficient amounts of DNA of the infecting strain is available, because no high-sensitivity diagnostic PCR was validated using these gene targets. However, a secY-based diagnostic PCR was recently described [9] and the sequence polymorphism of the gene segment amplified was validated as a relevant phylogenic tool [8, 9]. Therefore, we evaluated if the phylogeny of clinical specimens using this target would confirm the ones obtained
with both MLST and the lfb1 sequence polymorphism, and Selleckchem CP 868596 notably confirm and provide a more precise identification of L. interrogans clusters 2 and 3. The secY-derived phylogeny was in agreement with both the MLST and the lfb1-derived phylogenies and identified the same clusters (Figure 2). However, L. interrogans clusters 2 and 3 that were only evidenced by lfb1 polymorphism from clinical specimens could not be confirmed because no secY PCR product could be amplified from any of these specimens. Whether this was due to the low leptospiraemia of the corresponding patients (see Table 2) and using a different qPCR platform and different PCR reagents from Tau-protein kinase the ones described by Ahmed et al. [9] or to primer mismatch
in the corresponding DNAs remains unknown. Interestingly, L. interrogans cluster 5 had a secY sequence identical to L. meyeri serovar Perameles strain Bandicoot (a strain recently reassigned to the species L. interrogans [25]) and L. interrogans serovar Hardjo strain Hardjoprajitno. However, this identity was not confirmed by MLST or lfb1 sequences. Conclusions Using a combination of MLST and other sequence polymorphisms, we evidenced 7 different Leptospira genovars belonging to both L. interrogans and L. borgpetersenii. They would correspond to at least 7 strains currently circulating in New Caledonia, should two or more strains not be discriminated by this typing scheme. Within these 7 putative strains, one was presumptively identified as L.